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Abstract. The fraction of samples spanning a lattice at its percolation threshold is found via 
simulations of band and site-bond percolation to have a universal value of about 0.42 in three 
dimensions. The ratio of shift (of the finite to infinite size threshold) to width of the threshold 
distribution is also compatible with universality. Lattices with up to 1O0l3 sites and/or very 
good statistics were needed to obtain clear results in these Monte Carlo tests; pretiminary studies 
with smaller lattices were inconclusive. 

The renormalization group description [l] of the percolative phase tradition was recently 
corrected by Ziff [2], whose arguments were criticized and generalized by Aharony and 
Hovi [3] with emphasis in two dimensions; here we check them numerically in three 
dimensions. Consider a &dimensional lattice, of linear sue  L. If a random fraction p 
of the bonds between nearest neighbour sites is occupied, then there is a probabdity R L ( ~ )  
that a particular sample contains a connected cluster which connects two opposite ends of 
the lattice. Here we follow rule RI of [l], in which one considers spanning only in one fixed 
direction, leaving the other boundaries free. For infinite L,  R&) is equal to 0 (or 1) for p 
below (or above) the percolation threshold pc. The value of RL at pc,  R L ( ~ ~ ) ,  has been the 
topic of several recent papers [Z, 31. RL was called the crossing probability by Langlands 
eta1 [4], and the spanning probability in [2]. A while ago, Reynolds et al [l] suggested an 
approximate real space renormalization group, based on the recursion relation p’ = R&). 
where b was the length rescale factor. This recursion relation implies that pc is given by 
the solution of p .  = R&), and therefore that R L ( ~ ~ )  is not universal. In contrast, recent 
work 12-41 showed that RL(pc) is universal, equal to f for several two-dimensional (2D) 
lattices with both bond and site percolation. In the present paper we consider this issue for 
some 30 cases. As a byproduct we also re-evaluate the percolation threshold for 3D bond 
percolation. 

This 
derivative may be interpreted as the distribution function of the threshold concentration 
p at which particular realizations of the sample percolate 151. Defining averages via 
(A) = 1 dpA(dRL(p)/dp), this implies that p,(L)(p)  approaches pc and that the squared 
width, Az = ((p- approaches zero as L -+ W. Below we evaluate both the 
shift (pc  - p,) and the width A, and compare their L-dependence with the theoretical 
predictions. A simple prediction, that ignores corrections to scaling, is that one expects 
Rr;(p) to depend on p and L only via the scaled variable L/$ - Llp -pel", where 5 is the 
percolation correlation length [5]. This would imply that both [pa&) -p , ]  and A(L) decay 

At finite large L, the derivative dRL/dp has a sharp peak close to pc. 
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as L-'/". However, adding correction terms and considering some specially symmetlic ZD 
cases, Ziff [Z] showed that the former difference decays faster, as L-'/"-'. Aharony and 
Hovi [3] then generalized this argument, and showed that there also exist terms of order 
L-'ly4, where 8 comes from confiuent corrections. Basically, Aharony and Hovi showed 
that &(p)  obeys the scaling form 

RL(~) = F(AtL"", BiwiL-") ( 1 )  

where t = p - p c  and wt represents irrelevant variables. The function F ( x ,  yi) is universal, 
and only the scale factors A and Bi depend on details of the lattice. Equation (1) immediately 
implies that when L approaches infinity, &(pe) approaches the universal limit F(0,O). 
Another direct consequence of (1) is that the scales of both [ p m  - pc]  and A contain the 
scale factor A ,  and therefore that in the l i t  t + 0, L + 03 the ratio of these two 
quantities must approach a universal l i t  For the special 2D cases studied by Ziff [Z], this 
ratio approaches zero. In the present letter we check both RL(~.) and this ratio in 3D, and 
confirm that both have non-trivial universal values. 
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Figure 1. Threshold versus width for simple cubic bond and site-bond percolation, L = 3 to 
1001. ~verages fiom IO UI 104 s m p i s .  

Our specific procedure is to check for a given sequence of random numbers at which 
occupation probability p a spanning cluster fist appears, call pa" the average over this p 
for different sequences of random numbers and A its RMS deviation (width). To reduce 
the chances for programming errors and to check universality between several cases, we 
studied site-bond percolation with a fraction x of sites occupied; we looked at the pure bond 
percolation limit x = 1 and at x = 4- mostly. Using standard percolation algorithms [5] in 
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random bondupto 1001"3.10 to 2000samples. y=0.2488+0.15x 
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Figure 2. Enlarged view of large-lattice data f" figure 1. (a) refers to bond percolation, (b) to 
site-bond permlation. The straight lines have the same slope 0.15 and are thus compatible with 
univenality. The ten and four leftmost points in (a) and (b), respectively, refer to ten samples 
only and L > 300 and thus have large error bars of order 0.0001 and 0.0002; for smaller lauices 
the slatistics are much better (more than 2000 m s  for L 200) and the error bars smaller, as 
seen in the figure. 
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Figure 3. Fraction of spanning samples at the threshold for infinite lattices, for bond (a) and site- 
bond (b)  percolation. ?he agreement in the plafeau vdue confirms numeriwlly thc univonality 
of the crificd spanning fraction. 
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L x L x L cubes, we varied p for a fixed sequence of random numbers, until we found the 
threshold at which a cluster percolates from top to bottom for this sequence. For site-bond 
percolation, details of the threshold distribution depend on whether we allow for a different 
site distribution for each dkferent set of bond random numbers, or take the same sites for 
all different bond configurations; we took the first choice (theory predicts that universal 
features, like the ratio of [pa" - p,] to A, should not depend on this choice). Thousands 
of different random number sequences were averaged over to give the mean value pa&) 
and its standard deviation A(L). In figure 1 we plot the threshold width for both simple 
cubic bond and site-bond percolation. These functions exhibit a definite curvature which 
we interpret as resulting from strong corrections to scaling: for intermediate size lattices 
the shift [ p ,  - p J  is not yet proportional to the width A. Restricted to L > 23 for bond 
and L > 79 for site-bond percolation, the same data are plotted in figure 2 on a finer scale. 
This shows that the straight line pa" - pc  = 0.15A is a reasonable approximation in both 
cases, with pc  = 0.2488 and 0.556, respectively. The latter number corresponds to site 
occupation x = f .  Thus the deviation [ p ,  - p,]  is roughly proportional to the width A, 
as assumed for a long time [5] and not as in the special two-dimensional case of Ziff [2] .  
(Roughly the data fit (pa; - pJ/A = 0.15 + 3A for A < 0.1, but a correction term with a 
somewhat smaller power of A is not excluded.) 

With a simpler program, we also checked how often the cube percolates for a fixed p 
equal to the infinite-lattice pe = 0.2488 and 0.556; this fraction &(p,) is shown in figure 3 
to approach about 0.42 for both cases, clearly different from the thresholds pc = 0.249 and 
0.556. This confirms the universality of F(0, 0). and shows that the violation of the belief 
R'(p,) = pc is not restricted to Ziffs special cases. The data in figure 3 were plotted 
versus log L, to emphasize the plateau at large L.  For small L,  plots of R'(pc) versus l /L 
are roughly straight, consistent with a leading correction of order 1 jL  as predicted by Ziff 
121. 

We now consider applications of these calculations to the question of percolation 
thresholds. In figure 3(&), the fractions for p = 0.5560 but not those for 0.5559 seem 
to increase for the largest lattices, indicating that the true threshold is slightly lower than 
0.556 for the site-bond case, as also suggested by figure 2(b). Similar spanning fractions 
were obtained at x = 0.8 and p = 0.321. For pure bond percolation, the different trial values 
0.2487, 0.2488 and 0.2489 shown in figure 3(a) suggest pc  = 0.2488&0.0001. Figure 3(a) 
shows that, already for the moderate lattice sizes used here, the bond percolation threshold is 
below the value 0.2493 claimed by Wilke, Stauffer and Zabolitzky [6], and compatible with 
0.2488 of Grassberger, Adler et al and Ziff and Stell [7]. The reason for the discrepancy is 
unclear, but the old simulations used a sophisticated efficient program whereas the present 
version was written to be more primitive and reliable and already in 1988 confirmed the 
lower value [SI. After completing these calculations we received a communication from 
R M Ziff proposing the value 0.555 88 for site-bond percolation, more precise but in good 
agreement with our value. 

Thus our three-dimensional data confirm the general predictions from the scaling theory, 
and do not exhibit the special features which were observed in two dimensions. In particular, 
the critical spanning fraction RL(pc)  is a universal number near 0.42 and thus cannot agree 
with the non-universal p-  Simulations in higher dimensions are in preparation. 

~~ 
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